UCRL-TM-229497

RadSrc Library and Application Manual

Larry Hiller, Tom Gosnell, Jeff Gronberg, Doug Wright
Lawrence Livermore National Laboratory

November 8, 2007

Abstract

The RadSrc (“Rad-Source”) suite provides computationppsut for applications addressing ra-
dioactive decay and emission of radiation from decay. Thd3Ra library,libradsrc, computes the
concentrations of decay products given an initial conegioin and age, and photon radiation due to
continuing decay of those products. Written in C++, thedifgrprovides an object-oriented interface to
computational results, as well as its underlying datab&ssotope information. The library also pro-
vides a simplified interface in FORTRAN and C++ intended fee in Monte Carlo applications, and
can accommodate varying levels of integration with othetledoases. A stand-alone applicatimagsrc
serves as an interactive user interface to the library. TdAdSRe suite is open source and licensed under
the BSD license and can be downloaded fioint p: / / nucl ear . | | nl . gov/ si nul ati on.

1 Introduction

Many applications exist that require the calculation ofdesl theoretical radiation spectrum resulting from
the natural decay of radioactive elements. Often this ideaource spectrum is modified through Monte
Carlo simulation of radiation transport to account for apion and scattering of radiation in matter. Three
such Monte Carlo transport codes, MCNP/X[1], GEANT4[2]daDOGI3] allow the user to specify cus-
tom radiation sources in the transport simulation. Thiseneless required users to manually specify the
radiation source distributions and/or supply samples filoendistributions.

A previous solution, GAMGEN]J4], automated the calculatioihdecay product concentrations in an
aged material containing radioisotopes and the distobutif photons emitted by nuclear decay. Despite
the added convenience of having the photon distributiomspeed, manual intervention was required to
communicate this information into the Monte Carlo codes.

The RadSrc Suite has been developed to incorporate thigdatdn directly into the Monte Carlo codes
themselves. Written in modern C++, the RadSrc libridloyadsrc takes advantage of modern techniques
to streamline the calculation and modularize the functioihdatabase handling, decay product and photon
calculations, and provide flexible interfaces. The libramultaneously provides a rich interface to the
library capabilities for C++ applications while it also pides a slim interface to FORTRAN Monte Carlo
applications. The object-oriented design facilitates alaptation of new sources of isotope data beyond
that provided in the RadSrc distribution. A stand-aloneligppion, radsrg is included to reproduce the
functionality of GAMGEN using the RadSrc library.

*Contact info: wright20@lInl.gov, 925-423-2347

/ 218AtH 214R n|.>| 214p o
| 238y |.>| 2341 h|.>| 234mp al.»' 234y |.>| 230T h|.>| 226R a|.>| 22 n|.>| 218P0|

214p b|.>| 214 ||_>| 2107

Figure 1: Decay paths fa#8U and its daughter isotopes, including at most a single adpiisa single beta
decay. There are 30 possible paths froffu to 2°6Pb.

RadSrc accepts an initial isotope mixture and desired age@amputes the concentrations of the decay
products, and photon emission spectrum from radioactov®jes in the aged mixture. The user has the
opportunity to select certain lines of interest and bin taenainder; this can simplify comparison of the
computed spectrum to experimental data. Several binnitigrepare provided, including pre-computed
binning schemes TART and MORSE, uniform binning and binrprgportional to a square-root of energy
function. The user is similarly free to choose any of thesailbig schemes for the computed bremsstrahlung
radiation (if present) and the custom tally bins for the MC MCNP/X transport codes.

The RadSrc Suite and its data has been released under the &8 Dsource license. Users are free
to incorporate RadSrc functionality into their own appioas, or adjust and enhance the isotope database
with new isotopes, new decay modes, or improved values.

2 Computation of Decay Products

Radioisotopes can decay into other isotopes with lowerageebinding energy per nucleon[5]. Isotopes
will typically decay by one of several processedpha decaywhich emits anx particle (helium nucleus)
and reduces both the atomic number and atomic mass byh®ta:minusdecay, with emission of &~
particle (electron), which increases the atomic numbeheta decay withketa-plu$ or without lectron
capture emission of g8* particle (positron), either of which decreases the atoraiolper.

Radioactive decay is frequently accompanied by emissigrhofons. The parent isotope may decay to
an excited state, which enter the ground state by emittimgosrmore gamma rays. The atomic electrons
may also emit x rays as they re-adjust to the new nuclear palterif a charged particle is emitted in
the decay, it may also emit photon radiation as it travelsubh condensed matter, callbctkmsstrahlung
radiation[5].

A radioisotope may decay by both alpha and beta modes. Alpasteular decay mode may decay
to both the ground state and one or more excited states oftlghter nucleus, with different gamma and
bremsstrahlung emission. These are terahethy branchesThe probability of any particular decay branch
occurring is thebranch fraction There are further variations of these decays. For exaraplecay to an
excited state may result in emission of a neutron. The rdtdeaay for all the decay branches sum to the
overalldecay rate Thehalf-life, In2 divided by the overall decay rate, is the time when héthe atoms of
a radioisotope have decayed.

A radioisotope may decay into one or more isotopes that @mdklves radioactive. As these daughter
isotopes decay into other radioisotopes, a chain of decaf@lowed. This chain will branch at isotopes
with multiple significant decay, and often rejoin when twahsacontain the same alpha and beta decays but
in a different order. The decay chainGfU is shown in Figure 1 as a typical example.

As time progresses, the numbers of atoms of the daughtepsstise and fall. Since the half-lives of
isotopes in the decay chain range over many orders of mafgnittertain isotopes will come to dominate
the decay of other isotopes, and the concentrations of thetmes will be fixed to a nearly constant ratio.
This is termedsecular equilibrium One may infer the presence and concentration of an isotw@iedbes
not emit photons by detecting and measuring the intensipghofons emitted by another isotope that is in
secular equilibrium with the hidden isotope. To do this, washrtalculate the isotope ratio at the time of
measurement.

Bateman derived the closed-form solution to the diffesngéiquations governing radioactive decay
through the use of Laplace transforms in 1910[6][7]. Therfaf the solution lends itself to calculation
by recursion. Without loss of generality, we can reduce ttoblpm of multiple initial parent isotopes to
independent problems with a single parent isotope and sanmtlividual solutions. Each parent isotope is
the root of a directed acyclic graph with decay products aesoFurther, we can consider each path in the
directed graph independently of the other paths and sumolbéans for each linear decay chain. These
decompositions are made possible by the linearity of thgiral system of differential equations.

Consider the following system of equations describing éiQ@dar decay path:

No(t) = —AoNo(t) €N
Ni/(t) = fi_1Ai—aNi—1 () = ANi(b) (2)
LCES ®

In these expressiont|(t) is the time dependent concentration of isotopk is the decay constant for
that isotope, and; is the branch probability for the particular decay of is@dmiven in this chain. It is
readily verified by substitution that this system has sohgiof the formt

Ni(t) = I A et 4
(t) ,; j
with
Agp=1
o ficAi o
AH_WA'LJ, 0<j<i (5)

Aji=-— gl)ALj

This recursive formulation is particularly amenable tocaddtion with dynamic programming tech-
niques. The decay graph is traversed using the lists of dacales provided by the isotope database. Each
branch is followed in turn by recursively calling the caktidn routine with the branch fraction and daughter
isotopes applicable to that branch, and the constantéor the branching isotope. Upon reaching a stable
isotope, the recursive functions return to each branchtpiien following the next branch until no branches
remain. This avoids re-computing the constants for all sséoipes preceding a branching decay.

The pairs of constant4; ; and decay constanfg are stored in a mapping as they are computed. Terms
associated with the samg are summed as all possible decay paths to a particular dauigbtope are
encountered. At the conclusion of the calculation, the nrappolds all contributing exponential terms to
the time dependent concentration of each isotope.

1This form implicitly assumes that all decay constants aséntit. Although this is true in general for nuclear decayusmces,
libradsrc will exit if presented with a contrived example containinigmtical decay constants.

3

3 The RadSrc Library

Four components comprise the RadSrc libribyadsrc:
e isotope database management,
e decay product calculations,
e photon intensity calculations,
e and interfacing routines.

Libradsrc is written in C++ and employs an object-oriented design. r&Jseho are solely interested in
obtaining photon distributions for Monte Carlo simulasonwill be satisfied by the simplified FORTRAN
and C++ interfaces presented. Other users of the library divagtly interface with the library objects to
access the isotope database or the full capabilities ofydacaluct and photon calculation routines. Details
of the library API are presented in the appendix.

The required information about isotopes is provided byGlmtopeDatabaseclass. This class contains
physical information about isotopes such as mass and ifglfd listing of all decay modes, their branch
fractions, and daughter isotope; and a listing of all gamaya and x rays produced by each decay. The class
provides iterators to list all decays and photons in an @orecord. Isotope databases are in turn managed
by theCDatabaseManager TheCDatabaseManagemakes it possible to obtain isotope information from
different data suppliers as well as accommodate diffetenage mechanisms.

Decay product calculations are handled by @igecayComputerclass. The object is configured with
an initial atomic fractions of isotopes and the desired agkso, an isotope database is selected. After
performing the decay product calculation, the object mtesia listing of a decay products, their concen-
trations, the decays producing the products, and the ukimparent isotope(s) present in the initial mixture
that yielded each decay product. Users may create mulfiplecayComputerobjects to address multiple
sources in the same calculation.

Photon intensity calculations are handled by @fhotonComputer class. This object is associated
with a CDecayComputerobject when it is created. This object takes the aged isatopeentrations and
computes the discrete x ray and gamma ray emissions listheé isotope database for each decay mode of
each isotope present. It also computes a binned bremssigatiistribution when applicable if the necessary
data is present in the isotope databaseCPhotonComputer object provides a list of all the photon lines,
sorted by either energy or intensity, as well as the decatytioduced the photons and the ultimate parent
isotope(s) in the initial mixture. This object also perngigsnpling from the photon distribution using a user-
supplied random number generator.

Users will obtain the greatest utility of the library by ditsy employing the aforementioned objects.
However, we anticipate that many users will simply want téagbthe aged mixture concentrations and
sample photons from decay sources in the mixtures. To tligtves provide a simplified interface to both
FORTRAN/C and C++. The simplified interface encapsulatesChotonComputer and CDecayCom-
puter classes, handles initialization, and interfaces with tber's code subject to most of the limitations
of FORTRAN 77. The ability to address independent mixtureuwdations is retained in the FORTRAN
environment by providing an opaque handle to the user uptialiration. This handle is passed back to
the library in every function call.

Initialization of the library requires special attentioklsers attempting to integratdradsrc into an
application with controlled access to the source code mdintited in ways they can communicate infor-
mation to the library. Therefore we have provided four maddras for initializing the library:

4

Hard-coded initialization in the user's own code uskRADDI SOTOPE() andRSM X() .

Passing character data that has been incorporated intpphieadion’s 1/0 and initialization routines
on to the library one line at a time usiRPADDCONFI () andRSSOURCECONFI) .

Hard-coding the filename of a configuration file into the usewn code usingRSL OADCONFI () .

Relying on environment variables to locate both the isotdgta and the problem configuration.

With these four mechanisms availabléradsrc can accommodate any level of integration with the user’s
application.

4 RadSrc application

The calculation of radioactive decay products, althougdightforward, is well suited for automation. The
RadSrc library combines radioisotope data, x-ray and ganayéine catalogues, and measured bremsstrahlung
spectra to automatically compute the photon emission froraged radiological sample. The binary pro-
gramradsrcis the interactive user-interface for computing photoernsity distributions. It is designed to
duplicate the output and essential functionality of the GBEN application, using the RadSrc library to
perform the calculations.

Application features:

4.1

Calculation of decay product concentrations given anahisiotope mixture and the age

List of gamma and x-ray photons produced by radioactive yWexsmwell as the particular decay(s)
generating each photon line and the initial isotope resptn®r the presence of the line

Sorted output of photons by energy and intensity per gram
Bremsstrahlung background for the U-238 decay family

Computes bin structure for separate tally of scattered asdaitered photons during transport simu-
lation

Flexible selection of binning methods for photon lines nhsstrahlung photons, and scattered photon
tally

Outputs photon lines, bremsstrahlung photons, and tatltuctures in MCNP-compatible format

Written in portable C++ language

Usage

The interactive application is invoked with the commaadsrc The program accepts problem definition
from standard input or from a file, enabling batch execution.
The command line options are:

radsrc -h
radsrc [-q] [config file]

If a configuration file is specified on the command line, thex fie is read to obtain the problem data. Oth-
erwise, information is taken from stdin. The -q flag suppessal output to stdout, including run summaries
and interactive prompting. The -h flag provides commane-$ipntax help.

RadSrc will first attempt to load the database. If the envirent variable for the default database is
present, it will look in the location specified. As shippe&dSrc is configured to read from the GAMGEN
legacy database, and checks for the RADSEEGACYDATA environment variable. If this variable is not
found, radsrcwill check for the non-specific RADSROATA variable. If RADSRCDATA is not set, or is
incorrect,radsrcwill look for a directory called “data” in the current direxy. If no database can be found,
radsrcwill exit with a message suggesting that the user set the RADBATA environment variable.

RadSrc now requires a specification of the initial isotopgtune and the desired age of the computed
mixture. Isotopes are specified by their common abbrevigiiase insensitive) and atomic weight e.g. U-
238 or u238, but not U 238. Meta-stable isotopes have an nxsafff. Pa-234m. The isotope identifier is
followed by the isotope concentration as a atomic percentagr your convenience, all of the isotopes and
their concentrations may be specified as a single line, atgghby whitespace (spaces, tabs, and newlines).
RadSrc will ensure that each isotope you specify existsarRfidSrc database. If you mistype an entry, you
must reenter that isotope (and all following entries if eatieon the same line).

When you have entered all of the initial isotopes and theirceatrations, enter the keywoade fol-
lowed by the desired age in years. RadSrc will check the tmtatentration to ensure the sum is approxi-
mately 100%. The total concentration need not be exactiyd@dallow the user to specify concentrations
to different precisions. However if the sum is less than 1@%reater than 100.1%, RadSrc will assume a
data entry error and exit with a message.

Example:

>cd radsrc
>bi n/ radsrc

Ent er Sources on one or nultiple lines, ending with "age xx.xx" (in years)
The total quantity nust be between 100% and 100. 1%
Exanmpl e: U238 95.0 U235 5.0 Age 10
Exanpl e: Pa-234m 5e-14
Pa- 234 2e-14
U238 1.0
Age 10

Ent er <i sotope> <percent> or ACE <years> --> Pb-210 100

Ent er <i sotope> <percent> or ACE <years> --> brem of f

Ent er <i sotope> <percent> or ACE <years> --> range 100 3000
Enter <i sotope> <percent> or ACE <years> --> age 10

I nput Conposition: (fractional units)

Pb-210 1

Total: 1

Aged Conposition: (fractional units)
Hg- 206 1.12057e-12
TI-206 9.24168e-13

Pb-206 0.253889
Pb-210 0.732984

Bi -210 0.000451401
Po-210 0.0126763
Total: 1

Problem specifications begin at the prompt and continué¢ thetiage keyword and a number are input. New
lines are treated as a word separator (space).bfleenandr ange keywords and their arguments are op-
tional. Thebr em of f keyword specifies that bremmstrahlung should not be sanyl€ai\pi::getPhoton

nor included in any generated Monte Carlo input decks. rldrege keyword restricts calculation of emitted
gamma lines to the specified energy range. This subsequesthycts sampling b Api::getPhoton, line
lists, and Monte Carlo input decks.

After entering the problem specification, RadSrc will cortepiine concentration of isotopes in the aged
mixture and print the results. At this point, the user wilaahe opportunity to specify the binning structure
for bremsstrahlung radiation. As of this version, RadSowvjotes a measured bremsstrahlung spectrum due
to beta decay of**"Pa, scaled to the concentratior?df"'Pa present and rebinned as specified by the user.
In general, binned data will have the following options:

Sel ect binning options for Brensstrahl ung:

1) Default Binning
2) Read froma file
3) Equal spaced bins
4) Proportional to Energy Wdth
5) TART 65 bins (Nal)
6) MORSE 35 bins (Nal)
7) GADRAS 1000 bins (HPGe)
Sel ect (1-7):

Option 1, default binning, is a bin structure specifiedlibydfltbrem.datand may be customized for local
installations. Option 2, read from a file, reads bin boureafiom a user-specified file. A default filename
is suggested, depending on the quantity being binned. @tioreates a specified number of bins with
specified maximum and minimum energy boundaries. Optiones dioee same, but varies the bin width
in proportion to the functiork; + koEY/2, with k; andk, specified by the user arfl is the lower energy
boundary of the bin. The remaining options are predefinedtoirctures. After selecting a binning option,
the user will be prompted for any additional informationuigd by that option.

At this point, the user will be given the option to bin someay-land gamma ray lines and keep the
others. These options are presented in a menu similar tdrthang options:

Sel ect binning options for gamma | i nes:

1) Keep all lines

2) Bin all lines

3) Keep the default lines

4) Read the line list froma file
Sel ect (1-4):

These options are mostly self-explanatory. Option 3, defaues, refers to a line found ifib/dfltlins.dat
Option 4, read from a file, reads line energies from a usetifipeé file. Note that the lists of line energies
must exactly match the line energies listed in the datalzemkchanges in the database should be reflected in
the line energy lists. However, a mechanism is provided &zi§p approximate energy ranges. By default,
line energies must be specified to 0.1 keV.

If you elect to bin some or all of the lines, the program wiltréct its output of unbinned lines to those
that fall within the same energy range as the binned lines.uRiscattered photon tally will also be restricted
to this energy range. If you do not bin any lines, you will bempted to specify a maximum and minimum
energy. If you specified the optionahnge keyword, this range will be used.

The problem specification is completed by selecting a bopsinucture for binned gamma photons (but
only if you elected to bin photons) and for the scattered ghaoally. These selections are made in the same
way the bremsstrahlung binning was selected.

At this point, RadSrc will execute and produce two outpussfileutput.linandoutput.mci Output.lin
contains lists of all photons lines emitted by radioiso®pethe aged sample and their originating decays.
Output.mcicontains the photon distributions and bin structures folugion in an MCNP input file.

5 Installation

The RadSrc Suite is distributed as a single archive comigutine source code and isotope data necessary for
operation. Upon extraction, you will have the completeritistion in a self-contained directory structure:

e /bin, /Iib— Destination directory for executables and the library.
e / src — Source code and makefile.
e / doc — Documentation and destination for doxygen files.

e / dat a — Isotope database files.

To install, simply change to the source directory and typ&e. This will compile both the library and ap-
plication with the GNU compiler and install them in the apmiate directory. To compile either separately,
typenmake radsrc ormake |ibradsrc.

The provided makefile also includes flags for the Intel andl&wt Group compilers. To compile using
either of these compilers, include the target el orport| and on the command line.

If you have doxygen installed on your system, typgke docs to generate the html documentation.
A file that redirects to the main page is provided in the doedary for your convenience.

To accommodate applications that cannot specify the locaii the isotope data base, the RadSrc Suite
will check environment variables for the correct path. 8ittee RadSrc library can load multiple databases,
each database parser will look for an environment varigteeitic to the parser. All parsers will fall back to
the RADSRCDATA environment if the parser-specific variable is not Sete GAMGEN legacy database
parser will first check RADSRCEGACYDATA, then RADSRCDATA to locate the database. If neither
variable is set or no database is found at that location ey will attempt to load from a subdirectory in
the current directory called “data”.

You may configurdibradsrc to use extended-precision arithmetic when calculatingps® concentra-
tions. To do accomplish this compile withSE_HI GH.PRECI SI ON defined, or edit porting.h. You may
also use an external library by editing porting.h. TheihghPr eci si onType must be a typedef to a
class that supports basic arithmetic operators and thenexytial function. Note that the RadSrc application
currently only links with the double precision library.

8

References

[1] “MCNPX Version 2.5.0 User’'s Manual,” LA-CP-05-0369, E@lamos National Laboratory (2005).
[2] S. Agostinelli,et. al, “GEANT4 — a simulation toolkit,” Nucl. Inst. Meth. £06, 250-303 (2003).

[3] R. Buck, et. al.“A Multiparticle Monte Carlo Transport Code, User's Manuglfth Edition,” UCRL-
TM-202590, Lawrence Livermore National Laboratory (2002)

[4] T. Gosnell, “Automated calculation of photon source ssion from arbitrary mixtures of naturally
radioactive heavy nuclides,” Nucl. Inst. Meth.289, 682-686 (1990).

[5] K. S. Krane,Introductory Nuclear Physics. John Wiley & Sons:New York (1988).

[6] H. Bateman, “Solution of a system of differential eqoat occuring in the theory of radioactive trans-
formation,” Proc. Cambridge Phil. Sot5, 423-427 (1910).

[7] D. S. Pressyanov, “Short solution of the radioactiveajechain equations,” Am. J. Phy&X4), 444-445
(2002).

A Library API

This appendix describes thidradsrc API. 2 Libradsrc provides a simplified API for applications solely
interested in computing and sampling photon distributioAdull-featured C++ API is also provided for
complete access to the isotope database and decay prodys@ion calculations.

Note that all C++ functions are contained with in tiaglsrc namespace.
A.1 Error Handling

The library declares theRadSourceExceptionclass for error handling. There are no subtypes of this class
at this time. This class is thrown in the following situatson

e An unrecognized database type is requested, or a databessr garequested to parse a foreign
database type. (Currently, only the GAMGEN legacy dataimsepported).

e The input mixture units are né&{TOM C_FRACTI ON.
e No database is loaded at the time calculations are performed

¢ If you call an accessor method in an uninitializE&6ammaEntry object or dereference an invalid
CPhotonlterator.

2N.B. This section is currently being updated for the 1.3asée Until then, please refer the the auto-generated doxiige as
the authoritative reference

A.2

Caveats

Please be aware of the following issues.
ASCII to floating-point conversion routines differ from nidige to machine. As a result, photon energies
are known to be slightly different on different architeesir despite being constant values that are never
computed.
Finite precision can cause the concentration of some daughtducts to be negative at very short times
relative to their half-lives.

A.3

FORTRAN/C/C++ Monte Carlo Interface

In these examples,

LOG CAL SUCCESS

| NTEGER+ 8 HANDLE

CHARACTER*n FI LENAME, CONFI GSTRI NG
I NTEGER LENGTH, Z, A/ M N, NVAX

DOUBLE PRECI S| ON CONCENTRATI ON, E, AGE, LI NES[2][NVAX],

REAL*4 FRNG
I NTRI NSI C/ EXTRI NSI C FRNG, DRNG

Initialization will generally follow one of the followingdrms:
FORTRAN:

e Programmatically set the initial composition and final age.

C++:

CALL RSNEWSOURCE(HANDLE)
CALL ADDI SOTOPE(HANDLE, 92, 238, 0, 100D0)
SUCCESS = M X(HANDLE, 25D0)

Load the configuration from a file.

CALL RSNEWSOURCE(HANDLE)

SUCCESS = RSLOADCONFI G{ HANDLE, ’ confi g. t xt ')

FOURV[4], DRNG

Concatenate a series of character strings into a singlgystantaining the configuration.

CALL RSNEWSOURCE(HANDLE)
DO
CALL RSADDCONFI G(HANDLE, CONFI GSTRI NG)
END DO
SUCCESS = RSSOURCECONFI G(HANDLE)

Programmatically set the initial composition and final age.

CRadSour ce* handl e = newSource();
addl sot ope(HANDLE, 92, 238, 0, 100. 0)
bool success = m x(HANDLE, 25. 0)

10

e Load the configuration from a file.

Handl e handl e = newSource();
bool success = | oadConfi g(handl e, "config.txt")

e Concatenate a series of character strings into a singigystantaining the

Handl e handl e = newSource();
whil e(configstring) {
addConf i g(handl e, configstring);

}

bool success = sourceConfig(handle)

No explicit C APl is provided. Instead, C programs should tted FORTRAN API functions (with trailing
underscores) using the prototypes provided.

A.3.1 Create a new radiation decay problem.

Returns or sets an 8-byte buffer as the problem handle. pleiliindependent problems can be created, and
are accessed via this handle.

staticCRadSourcex CApi::newSource (void)
void rsnewsource (charxpHandle)

CALL RSNEWSOURCE(HANDLE)

A.3.2 Create and execute a new decay calculation problem.

This routine loads configuration information from a file. Thilename may be either a CHARACTER
variable or string literal. If the filename is the empty gfirthe library checks the RADSRCONFIG
environment variable for the filename. If the file is succealbgsiparsed, the problem is set up and the aged
mixture is calculated. The function returns true is sudcgstlse if failed.

static intCApi::loadConfig (CRadSourcexpRadSource, const std::string &filename)
int rsloadconfig. (charxpHandle, chakptr, int len)

SUCCESS = RSLOADCONFI G{ HANDLE, FI LENAME)

SUCCESS = RSLOADCONFI G(HANDLE, ' fi | enane. t xt ")
SUCCESS = RSLOADCONFI G(HANDLE, ' ') for default |ocation

A.3.3 Add an isotope to the input mixture.

Input parameters are atomic number, atomic mass, metastade, and atomic fraction in percent.

static voidCApi::addIsotope (CRadSourcexpRadSource, int z, int a, int m, double perc)
void rsaddisotope (charxpHandle, const int &z, const int &a, const int &m, const dauBlperc)

CALL RSADDI SOTOPE(HANDLE, Z, A, M CONCENTRATI ON)

11

A.3.4 Getthe number of discrete photons.

static intCApi::nLines (constCRadSourcexpRadSource)
int rsnlines_ (const chaxpHandle)

N = RSNLI NES(HANDLE)

A.3.5 Get the first nmax (energy,intensity) discrete photorentries.

Parameters are a 2-by-NMAX double precision array, and NM#&& maximum number of entries to return.
Entries are returned in sorted order.

static voidCApi::getLines (CRadSourcexpRadSource, double lines[][2], int nmax)
void rsgetlines. (charsxpHandle, double lines[][2], const int &nmax)

CALL RSGETLI NES(HANDLE, LI NES, NVAX)

A.3.6 Get arandom photon energy in keV.

Sample a energy from the photon distribution using the randamber generator provided. Note that the
FORTRAN and C interfaces have different function namesifagle and double precision random number
functions.

static doubleCApi::.getPhoton (constCRadSourcexpRadSource, doublggrng)(void))
static doubleCApi::getPhoton (constCRadSourcexpRadSource, floatprng)(void))

doublersgetphoton. (const chasxpHandle, double{prng)(void))
doublersgtrphoton_ (const chaxpHandle, floatéprng)(void))

E
E

RSGETPHOTON(HANDLE, DRNG)
RSGTRPHOTON(HANDLE, FRNG)

A.3.7 Getarandom 4-vector E,px,py,pz in natural units (keV).

Sample an isotropic four-vector from the photon distribatusing the random number generator provided.
Note that the FORTRAN and C interfaces have different fumctiames for single and double precision
random number functions.

static voidCApi::get4V (constCRadSourcexpRadSource, double e[4], doublp(ng)(void))
static voidCApi::getdV (constCRadSourcexpRadSource, double e[4], floaprng)(void))

void rsget4v. (const chasxpHandle, double e[4], doublgirng)(void))
void rsgtrdv_ (const charxpHandle, double e[4], floatprng)(void))

CALL RSGET4V(HANDLE, FOURV, DRNG
CALL RSGTR4V(HANDLE, FOURV, FRNG

12

A.3.8 Store a summary into a character variable.

Writes the input and output mixtures to a STL string, chaaygror CHARACTER variable. Note that in the
C interface, the third parameter is the buffer length. Thefion returns the number of characters placed in
the buffer. The string igot nul-terminated.

static std::stringCApi::.getReport (constCRadSourcexpRadSource)
int rsgetreport_ (const charkpHandle, chakptr, int len)

LENGTH = RSGETREPORT(HANDLE, BUFFER)

A.3.9 Add to the growing string of configuration information.
Input may be either a CHARACTER variable or a string literal.

static voidCApi::addConfig (CRadSourcexpRadSource, const std::string &input)
void rsaddconfig. (charxpHandle, chakptr, int len)

CALL RSADDCONFI G{ HANDLE, CONFI GSTRI NG)
CALL RSADDCONFI G{ HANDLE, ' U238 100")
A.3.10 Parse the configuration information and perform the alculations.

The function parses the configuration information provitgdaddConfig(). If successful, it sets up the
problem and ages the mixture. It returns true if succeskflde if failed.

static intCApi::sourceConfig (CRadSourcexpRadSource)
bool rssourceconfig (char«xpHandle)

SUCCESS = RSSOURCECONFI G{ HANDLE)

A.3.11 Age the input mixture.

This function ages the mixture set by addisotope. The parrsthe age in years. Returns true if success-
ful, false if failed.

static intCApi::mix (CRadSourcexpRadSource, double age)
int rsmix_ (charxpHandle, const double &age)

SUCCESS = RSM X(HANDLE, AGE)

A.3.12 Sort the photon list.

Sorts the photon list by ascending energy or descendingsitye Parameter is 1 for energy and 2 for
intensity.

static voidCApi::sort (CRadSourcexpRadSource, int field)
void rssort_ (charxpHandle, const int &field)

CALL RSSORT(HANDLE, 1) for energy
CALL RSSORT(HANDLE, 2) for intensity

13

A.4 Class Clsotope

The Clsotope class is the fundamental identifier for isotopes in the raNuclear isomers are distin-
guished by a metastable state number. Theotope class also possesses convenient conversion functions
to and from isotope names.

A.4.1 Construct a Clsotope

Clsotope()
Clsotope(int z, int a, int mm=0)

A.4.2 getZ, A, and metastable level

int getAtomicNumber (void) const
int getMassNumber(void) const

int getMetastableNumber(void) const

A.4.3 Obtain the canonical name of the isotope.

These methods create the canonical name of the isotope. Narmaeof the form Zzz-AAAmMN, with a
maximum size of 9 characters. Invalid isotopes are name@™ H-

void toString (charxstr) const
void toString (std::string &str) const

std::stringtoString () const

A.4.4 Parse variations of the isotope name.

These methods define tli@sotope by parsing a string. The ’-’ is optional but must not be wipiase.
Capitalization is also ignored.

Clsotope & fromString (const chakstr)

Clsotope & fromString (const std::string &str)

A.4.5 Isthis a valid isotope? (conversion from strings candil)

If the Clsotopeis not initialized orfromString fails, this method will return true.

boolisValid (void) const

A.5 Class CDatabaseManager

This class creates isotope databases from database-speuifnes and classe£IsotopeDatabaseand
CDatabaseManagerprovide a uniform interface for accessing isotope infoiorategardless of the source,
storage, or formatting of the underlying data. ThRatabaseManagerclass is a singleton.

14

A.5.1 Enumerations

enumDatabaseType{ LEGACY , ENSDF, ENSDF ERRATA }

A.5.2 Typedef

typedef std::pai int, std::string> Databaseldentifier

A.5.3 Obtain a pointer to the library’s CDatabaseManager.

A single CDatabaseManagerobject manages all the databases in the library. This fomatiill return a
pointer to it.

staticCDatabaseManagerx getDatabaseManagei(void)

A.5.4 Obtain a pointer to a particular isotope database.

This function loads an isotope database and returns a pémieif successful. This first parameter is an

enum of typeDatabaseType Currently onlyLEGACY , the GAMGEN database format, is supported. This
parameter selects which database parser is to be used. ddrelggarameter is an identifier to a specific
database. The meaning of this parameter is defined by thetestlparser, but is typically one or more

filenames. Databases with the same parser and identifienay@euand need only be loaded once.

A.6 Class ClsotopeDatabase

TheClsotopeDatabaseclass maintains a mapping frogisotopeto ClsotopeData and provides methods
and iterators to access isotope data in the mapping.

A.6.1 Typedefs

typedef std::mag Clsotope ClsotopeDatax > IsotopeList
typedef std::mag Clsotope ClsotopeDatax >::.constiteratorisotopelListlterator

A.6.2 Getthe library’s isotope database manager object.

staticClsotopeDatabasex getlsotopeDatabasdint type, std::string info="")

A.6.3 Obtain information on an isotope.

Returns a pointer to @lsotopeDataobject if the database contains an entry for the isotope ifandt.

constClsotopeDatax getlsotopeData(constClsotope &iso) const

A.6.4 Check if an isotope is present in the database.

bool haslsotopeData(constClsotope &iso) const

15

A.6.5 Iterators for accessing isotope data.
These methods return iterators to access isotope datadielisgope in the database.

IsotopelListiterator isotopesBegin(void) const
IsotopeListlterator isotopesEnd (void) const

A.6.6 Getthe number of isotopes in database.
int getNIsotopes(void) const

A.7 Class ClsotopeData

The ClsotopeDataclass encaspulates the basic isotope constants and g titpossible decays. Decay
entries are distinct even if they ultimately decay to the s@@aughter isotope. For example, multiple beta
decay branches to different nuclear states, which then tifatedy decay, can each have an entry in the
database with unique associated photon emissions.

A.7.1 Typedef
typedef std::vectar CDecayMode>>::constiteratorDecaylterator

A.7.2 Getthe decay rate of a particular branch.

Units are disintegrations per second. The parameter isredtbranch number starting with zerol@ecaylt-
erator. Units are in disintegrations per second.

doublegetDecayRatg(int branch) const
doublegetDecayRatg(constDecaylterator &it) const

A.7.3 Getthe decay rate of the isotope
Units are disintegrations per second.

doublegetDecayRatgvoid) const
A.7.4 Decay branch iterators

Decaylterator decaysBeginvoid) const
Decaylterator decaysEnd(void) const

A.7.5 Getthe number of decay branches.

int getNDecayModeqVvoid) const

A.7.6 Getthe isotope which this entry describes.

constClsotope & getlsotope(void) const

16

A.7.7 Getthe canonical name of this isotope.

const chak getName(void) const

A.7.8 Getthe standard average atomic mass for the isotope.

Units are in grams.

doublegetAtomicMass(void) const

A.7.9 Get the halflife of the isotope.
Units are in seconds.

doublegetHalflife (void) const

A.8 Class CDecayMode

The CDecayModeclass encapsulates the information about a particularydetais includes the branch
fraction, the discrete photon lines, and the average biteaidisng spectrum.

A.8.1 Enumerations

enumDecayType{ UNSPECIFIED, ALPHA , BETA_GENERIC, BETA_MINUS, BETA _PLUS,
ELECTRON _CAPTURE, INTERNAL _-TRANSITION , ALPHANEUTRON , BETANEUTRON

}

A.8.2 Typedefs

typedef std::vecter CPhoton >::constiteratorPhotonlterator
typedef std::vecter double>::constiteratorBremBoundarylterator

typedef std::vecter double>::constiteratorBremintensitylterator

A.8.3 Getthe decay type.

This function returns the type of decay. The usefulnessiefiiue is entirely dependent upon the quality
of the underlying source of the decay information and theimetthat parses it.

int getDecayType(void) const

A.8.4 Getthe daughter isotope of this particular decay.

The method returns the daughter isotope of the decay, whishlb® a specific isomer.

constClsotope & getDaughter(void) const

17

A.8.5 Get the branch fraction of this particular decay.

This method returns the branching ratio of this particukecay.
doublegetBranchFraction (void) const
A.8.6 Get number of photons produced in decay.

int getNPhotons(void) const

A.8.7 Obtain iterators for the discrete photons produced bythis decay.

Photonlterator beginPhotons(void) const
Photonlterator endPhotons(void) const

A.8.8 get number of brem bins

int getNBremBins (void) const

A.8.9 Obtain iterators for the bremsstrahlung energy bin baindaries.

BremBoundarylterator beginBremBoundaries (void) const
BremBoundarylterator endBremBoundaries (void) const

A.8.10 Obtain iterators for the bremsstrahlung bin intensties.

Bremintensitylterator beginBremIntensities (void) const
Bremintensitylterator endBremintensitities (void) const

A.9 Class CPhoton

The CPhoton class is a database entry for a photon. It contains the phetergy, the probability of
emission, and relative uncertainty in that probability.

A.9.1 Getthe photon energy.

Units are keV.

doublegetEnergy (void) const

A.9.2 Get the emission probability.
Probability is per decay.

doublegetFraction (void) const

18

A.9.3 Getthe relative error in the emission probability.
i AF
Erroris .

doublegetError (void) const

A.10 Class CDecayComputer

The CDecayComputer class stores the input and aged mixandsetains the time dependence of the aged
concentrations in a mapping Gisotopeto CBatemanSolution

A.10.1 Convert input to canonical units.

At this time, the only valid unit selection IBTOM _FRACTION . This also the default selection for the
object and this call is optional.

void normalizelnputUnits (void)

A.10.2 Append a radioisotope to the input mixture list.

The parameters are a fully constructetsotope class and the quantity of that isotope in unspecified units.
The units will later be defined with a call teormalizelnputUnits.

void addInputitem (constClsotope &iso, double amount)

A.10.3 Reset the object.
This method clears all data and settings in the object, éxbematabase selection.

void clear ()

A.10.4 Compute the isotope concetrations at a particular ag

This method causes the decay chain to be traversed and thel¢éipendence of each isotope in the chain is
computed. These are evaluated at the specified age to pridtieged mixture. The parameter is the age
in years.

ClsotopeMixture & ageMixture (double age)

A.10.5 Get the detailed solution.

Returns a mapping @Isotopeto CBatemanSolution which contains the full time dependence and parent-
age of every isotope in the decay chain.

const std::mag Clsotope, CBatemanSolution> & getFullSolution (void) const

A.10.6 Get the detailed solution for an Isotope.
Returns &CBatemanSolutionobject, which contains the full time dependence and of the.

constCBatemanSolution getSolution (constClsotope &isotope) const

19

A.10.7 Get mixture at a particular time.

Returns a mapping @lsotopeto double, giving the concentration of each isotope in thedlagixture. The
units are in atomic fraction.

constClsotopeMixture & getAgedMixture (void) const

A.10.8 Get the initial mixture.

Returns a mapping dflsotope to double, giving the concentration of each isotope in tligalmmixture.
The units are in atomic fraction.

constClsotopeMixture & getinputMixture (void) const

A.10.9 Look up some data in the current database.

Shortcut to obtain an isotope data entry from the databasently being used by thi€EDecayComputer
object.

constClsotopeDatax getlsotopeData(constClsotope &isotope) const

A.10.10 Get the current isotope database.
Get the current isotope database being used byCthiscayComputerobject.

constClsotopeDatabasex getlsotopeDatabasdvoid) const

A.10.11 Set the database to be used.

Set the isotope database to be used for future calculatiims.action resets the object as indicated in the
methodclear.

void initialize (constClsotopeDatabasexpisotopedb)

A.11 Class CBatemanSolution

The CBatemanSolution stores the coefficients and decay constants for each terimeisdlution for a
particular isotope that may appear in the aged mixture.sti a¢tains a listing (as an STL set) of ultimate
parent radioisotopes in the initial mixture contributimg isotope.

A.11.1 Getthe isotope for which this object is a solution.
constClsotope & forlsotope (void) const

A.11.2 Getalist of initial isotope parents.

Get a list (as an STL set) of radioisotopes in the initial mmigtthat eventually decayed into this
isotope.

const std::set Clsotope > & getChainParents(void) const

20

A.12 Class ClsotopeMixture

This class is a mapping froflsotopeto double, providing the concentrations of all the isotopdse list.

A.12.1 Compute the average atomic mass.
Computes the average atomic mass of the mixture, thus giyrgrms/mol.

doublecomputeAverageMasgvoid) const

A.12.2 Setthe isotope database
Sets the isotope database to be used for information almiopess in this mixture.

void setDatabasgconstClsotopeDatabasex)

A.13 Class CPhotonComputer

The CPhotonComputer class stores lists of photon energy and intensity and mathe association be-
tween a photon and its emitting isotope(s) in an aged mixr€PhotonComputeris permanently asso-
ciated with aCDecayComputerobject, and its associated isotope datab&ehotonComputer provides
an iterator class to access the sorted photon list.

A.13.1 Enumerations

enum{ ENERGY =0, INTENSITY =1}
enum{ PERMOLE , PERGRAM }

enumBinSubject { BIN_.BREM, BIN_GAMMA }

A.13.2 Typedefs

typedef std::magp Clsotope double> IsotopeMixture

A.13.3 Create and sort the list of emitted discrete photons.

Computes the discrete lines emitted by the decay of elenpeasent in the aged mixture in the associated
CDecayComputerobject. This function may be called again to change the sddrowvithout repeating the
calculation. The parameter is one of the enlENERGY (ascending energy) ®NTENSITY (descending
intensity).

void computeGammasg(int sortparam=ENERGY)

21

A.13.4 Get iterators for the lists of photons

These methods return begin and end iterators for the coenletf photons, and the subset list of photons,
respectively.

CPhotonlterator beginGammas(void) const
CPhotonlterator endGammas(void) const

CPhotonlterator beginSelectedGammagvoid) const

CPhotonlterator endSelectedGammagvoid) const

A.13.5 Getthe number of discrete lines in the list of photons

These methods return the size of the complete list of disqiedtons, and the size of the subset list, respec-
tively.

int getNGammas(void) const
int getNSelectedvoid) const

A.13.6 Setthe bin boundaries.

These methods set the bin boundaries of the bremsstrahhchgamn-selected (binned) photon lines. The
first parameter is one of the enu@EN _BREM or BIN_GAMMA . The second parameter may be either an
STL vector of doubles listing the bin boundary energies,moaigiay of doubles. In the later case, the length
of the array must be passed as the third argument.

void setBinning (BinSubject what, const std::vecter double> &)
void setBinning (BinSubject what, const double, int)

A.13.7 Select a subset of the discrete lines and bin the rest.

These methods subset the list of photons according to & ld#sired energies. Photons that are not in the
list of desired energies are combined into a distributiobinhed intensities. Energies may be provided as
either an STL vector of doubles, or an array of doubles.

Care must be taken to ensure that the energies in the listheneniergies in the isotope database are
identical in the machine’s native representation.

void selectGammagconst std::vecter double> &v)

void selectGammagconst double:lines=0, int n=0)

A.13.8 Get the bremsstrahlung binned data.

Returns &CBinnedDataobject which contains the bin boundaries and bin interssidfehe bremsstrahlung
distribution.

constCBinnedData & getBrem (void) const

22

A.13.9 Get the binned lines data.

Returns aCBinnedData object which contains the bin boundaries and bin interssitiethenon-selected
disrete lines.

constCBinnedData & getBinnedGammas(void) const

A.13.10 Sample the photon distributions.

These methods sample the combined discrete and bremssagédhtensity distribution. The first two meth-
ods return a photon energy in keV, while the second two maetfiidican array of energy and momentum
values in natural units (keV). In the latter case, the firsapseter is an array of four doubl¢g, py, py, p}.

All four methods require a pointer to a function returningher a single- or double- precision random
number in the range [0,1).

doublegetPhoton(double&rng)(void)) const
doublegetPhoton(float(xrng)(void)) const
void getFourVector (double e[4], double{ng)(void)) const

void getFourVector (double e[4], float{rng)(void)) const

A.14 Class CPhotonlterator

TheCPhotonlterator class combines information fro@PhotonComputerandCDecayComputerto pro-
vide complete information about emitted photon lingSPhotonliterator follows const forward iterator
semanticsCPhotonlterator dereferences to a conSGammaEntry object.

N.B. References th€EGammaEntry are valid only while while theCPhotonlterator points to it. If
the application requires tteGammaEntry to persist then a copy should be made.

A.15 Class CGammaEntry

The CGammaEntry class encapsulates all the information known about a des@igoton line, including
its origins in the decay chain.

A.15.1 Typedefs

typedef std::set std::paik Clsotope Clsotope > > DecaylList
typedef std::set Clsotope > ParentList

A.15.2 Getthe isotope in the initial mixture that produces his line.

This method returns a list (as an STL set) of all the isotopéise initial mixture that decayed into an isotope
that subsequently emitted this line.

constParentList & getChainParentlsotopegvoid) const

23

A.15.3 List the decays that produce a line.

This method returns a list (as an STL set of isotope pairspoémt and daughter isotopes that produce this
line.

constDecayList & getDecaydqvoid) const

A.15.4 List the isotopes that decacyed and emitted a line.

This method returns a list (as an STL set) of all the isotopasdmit this line in the process of, or as a result
of, decaying.

constParentList & getParentlsotopegvoid) const

A.15.5 Get aformatted list decays and ultimate parent isotpes of a line.

This method returns an STL string containing a list of ise®m the initial mixture that eventually produce
this discrete line. These isotopes are printed in squakéts []. It then lists the specific decays, parent to
daughter, separated by arrows,. -

std::stringgetParentDescription(void) const

A.15.6 Get the photon energy.

This method returns the photon energy in keV.

doublegetEnergy (void) const

A.15.7 Get the photon intensity

This method returns the photon intensity in the currentsur{lefault: photons/sec/gram of input mixture)
HighPrecisionTypeis defined in porting.h at compile time by the user.

HighPrecisionType getintensity(void) const

A.16 Class CBinnedData

CBinnedDatais essentially a structure describing binned data. Its neesnéire STL vectors of doubles or
HighPrecisionType containing the bin energy boundaries, the bin intensitles cumulative intensity and
total intensity.

A.16.1 Members

std::vectok double> m_energy
std::vectok HighPrecisionType > m_intensity

std::vectok HighPrecisionType > m_cumulative

HighPrecisionType m.sum

24

